Learning and Invariance in a Family of Hierarchical Kernels
نویسندگان
چکیده
Understanding invariance and discrimination properties of hierarchical models is arguably the key to understanding how and why such models, of which the the mammalian visual system is one instance, can lead to good generalization properties and reduce the sample complexity of a given learning task. In this paper we explore invariance to transformation and the role of layerwise embeddings within an abstract framework of hierarchical kernels motivated by the visual cortex. Here a novel form of invariance is induced by propagating the effect of locally defined, invariant kernels throughout a hierarchy. We study this notion of invariance empirically. We then present an extension of the abstract hierarchical modeling framework to incorporate layer-wise embeddings, which we demonstrate can lead to improved generalization and scalable algorithms. Finally we analyze experimentally sample complexity properties as a function of architectural parameters.
منابع مشابه
Synthetic Aperture Ladar for Tactical Imaging
Understanding how the brain works and reproducing its central capabilities in computers is arguably one of the greatest problems in science and engineering. This project directly contributes to this challenge from both a mathematical and an applied point of view. In particular, we have developed a mathematical description of a family of hierarchical architectures for learning, comprised of a co...
متن کاملClassification with Invariant Distance Substitution Kernels
Kernel methods offer a flexible toolbox for pattern analysis and machine learning. A general class of kernel functions which incorporates known pattern invariances are invariant distance substitution (IDS) kernels. Instances such as tangent distance or dynamic time-warping kernels have demonstrated the real world applicability. This motivates the demand for investigating the elementary properti...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملSparse Coding with Invariance Constraints
We suggest a new approach to optimize the learning of sparse features under the constraints of explicit transformation symmetries imposed on the set of feature vectors. Given a set of basis feature vectors and invariance transformations, from each basis feature a family of transformed features is generated. We then optimize the basis features for optimal sparse reconstruction of the input patte...
متن کاملOn Invariance in Hierarchical Models
A goal of central importance in the study of hierarchical models for object recognition – and indeed the mammalian visual cortex – is that of understanding quantitatively the trade-off between invariance and selectivity, and how invariance and discrimination properties contribute towards providing an improved representation useful for learning from data. In this work we provide a general group-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010